Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
RAGE binds preamyloid IAPP intermediates and mediates pancreatic β cell proteotoxicity
Andisheh Abedini, … , Daniel P. Raleigh, Ann Marie Schmidt
Andisheh Abedini, … , Daniel P. Raleigh, Ann Marie Schmidt
Published February 1, 2018; First published January 16, 2018
Citation Information: J Clin Invest. 2018;128(2):682-698. https://doi.org/10.1172/JCI85210.
View: Text | PDF
Categories: Research Article Cell biology

RAGE binds preamyloid IAPP intermediates and mediates pancreatic β cell proteotoxicity

  • Text
  • PDF
Abstract

Islet amyloidosis is characterized by the aberrant accumulation of islet amyloid polypeptide (IAPP) in pancreatic islets, resulting in β cell toxicity, which exacerbates type 2 diabetes and islet transplant failure. It is not fully clear how IAPP induces cellular stress or how IAPP-induced toxicity can be prevented or treated. We recently defined the properties of toxic IAPP species. Here, we have identified a receptor-mediated mechanism of islet amyloidosis–induced proteotoxicity. In human diabetic pancreas and in cellular and mouse models of islet amyloidosis, increased expression of the receptor for advanced glycation endproducts (RAGE) correlated with human IAPP–induced (h-IAPP–induced) β cell and islet inflammation, toxicity, and apoptosis. RAGE selectively bound toxic intermediates, but not nontoxic forms of h-IAPP, including amyloid fibrils. The isolated extracellular ligand–binding domains of soluble RAGE (sRAGE) blocked both h-IAPP toxicity and amyloid formation. Inhibition of the interaction between h-IAPP and RAGE by sRAGE, RAGE-blocking antibodies, or genetic RAGE deletion protected pancreatic islets, β cells, and smooth muscle cells from h-IAPP–induced inflammation and metabolic dysfunction. sRAGE-treated h-IAPP Tg mice were protected from amyloid deposition, loss of β cell area, β cell inflammation, stress, apoptosis, and glucose intolerance. These findings establish RAGE as a mediator of IAPP-induced toxicity and suggest that targeting the IAPP/RAGE axis is a potential strategy to mitigate this source of β cell dysfunction in metabolic disease.

Authors

Andisheh Abedini, Ping Cao, Annette Plesner, Jinghua Zhang, Meilun He, Julia Derk, Sachi A. Patil, Rosa Rosario, Jacqueline Lonier, Fei Song, Hyunwook Koh, Huilin Li, Daniel P. Raleigh, Ann Marie Schmidt

×

Full Text PDF | Download (12.37 MB)

Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts